RBPB: Regularization-Based Pattern Balancing Method for Event Extraction
نویسندگان
چکیده
Event extraction is a particularly challenging information extraction task, which intends to identify and classify event triggers and arguments from raw text. In recent works, when determining event types (trigger classification), most of the works are either pattern-only or feature-only. However, although patterns cannot cover all representations of an event, it is still a very important feature. In addition, when identifying and classifying arguments, previous works consider each candidate argument separately while ignoring the relationship between arguments. This paper proposes a Regularization-Based Pattern Balancing Method (RBPB). Inspired by the progress in representation learning, we use trigger embedding, sentence-level embedding and pattern features together as our features for trigger classification so that the effect of patterns and other useful features can be balanced. In addition, RBPB uses a regularization method to take advantage of the relationship between arguments. Experiments show that we achieve results better than current state-of-art equivalents.
منابع مشابه
Automatic estimation of regularization parameter by active constraint balancing method for 3D inversion of gravity data
Gravity data inversion is one of the important steps in the interpretation of practical gravity data. The inversion result can be obtained by minimization of the Tikhonov objective function. The determination of an optimal regularization parameter is highly important in the gravity data inversion. In this work, an attempt was made to use the active constrain balancing (ACB) method to select the...
متن کاملLeveraging Dependency Regularization for Event Extraction
Event Extraction (EE) is a challenging Information Extraction task which aims to discover event triggers with specific types and their arguments. Most recent research on Event Extraction relies on pattern-based or feature-based approaches, trained on annotated corpora, to recognize combinations of event triggers, arguments, and other contextual information. These combinations may each appear in...
متن کاملImproving Event Detection with Dependency Regularization
Event Detection (ED) is an Information Extraction task which involves identifying instances of specified types of events in text. Most recent research on Event Detection relies on pattern-based or featurebased approaches, trained on annotated corpora, to recognize combinations of event triggers, arguments, and other contextual information. These combinations may each appear in a variety of ling...
متن کاملJointly Event Extraction and Visualization on Twitter via Probabilistic Modelling
Event extraction from texts aims to detect structured information such as what has happened, to whom, where and when. Event extraction and visualization are typically considered as two different tasks. In this paper, we propose a novel approach based on probabilistic modelling to jointly extract and visualize events from tweets where both tasks benefit from each other. We model each event as a ...
متن کاملSVM-based feature extraction for face recognition
The primary goal of linear discriminant analysis (LDA) in face feature extraction is to find an effective subspace for identity discrimination. The introduction of kernel trick has extended the LDA to nonlinear decision hypersurface. However, there remained inherent limitations for the nonlinear LDA to deal with physical applications under complex environmental factors. These limitations includ...
متن کامل